Abstract
Active neurons experience rapid changes in their metabolic states since they have dynamic energy requirements. In this presentation, we demonstrate fast dual-channel label-free fluorescence lifetime imaging microscopy (FLIM) of NAD(P)H and FAD as a method for neurophysiology by performing computational photon counting in the onboard FPGA of the digitizer. The data throughput is reduced by 4x for each channel by compressing the photocurrents (16 bits) to photon counts (4 bits); the parallel processing on the FPGA ensures no lag. The setup was demonstrated for mammalian stem-cell-derived neurons under chemical stimulation, ion-channel blockers, and optical excitation. Fast FLIM on the FPGA enables dual-channel label-free metabolic optophysiology of neural activity in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.