Abstract
Small-molecule microarrays composed of tens of thousands of distinct synthetic molecules, natural products, and their combinations/modifications provide a high-throughput platform for studying protein-ligand interactions. Immobilization of small molecule compounds on solid supports remains a challenge as widely varied small molecules generally lack unique chemical groups that readily react with singly or even multiply functionalized solid support. We explored two strategies for immobilizing small molecule compounds on epoxy-functionalized glass surface using primary-aminecontaining macromolecular scaffolds: bovine serum albumin (BSA) and amine-modified poly-vinyl alcohol (PVA). Small molecules with N-hydroxysuccinimide (NHS) groups were conjugated to BSA or amine-modified PVA. Smallmolecule-BSA conjugates and small-molecule-PVA conjugates were subsequently immobilized on epoxy-functionalized glass slides through amine-epoxy reactions. Using an oblique-incidence reflectivity difference (OI-RD) scanning microscope as a label-free detector, we performed a comparative study of the effectiveness of BSA and PVA as macromolecular scaffolds for anchoring small molecule compounds in terms of conjugation efficiency, surface immobilization efficiency, effect of the scaffold on end-point and kinetics of subsequent binding reactions with protein probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.