Abstract

BackgroundHuman 8-oxoG DNA glycosylase 1 (hOGG1) is one of the important members of DNA glycosylase for Base excision repair (BER), the abnormal activity of which can lead to the failure of BER and the appearance of various diseases, such as breast cancer, bladder cancer, Parkinson's disease and lung cancer. Therefore, it is important to detect the activity of hOGG1. However, traditional detection methods suffer from time consuming, complicated operation, high false positive results and low sensitivity. Thus, it remains a challenge to develop simple and sensitive hOGG1 analysis strategies to facilitate early diagnosis and treatment of the relative disease. ResultsA target-induced rolling circle amplification (TIRCA) strategy for label-free fluorescence detection of hOGG1 activity was proposed with high sensitivity and specificity. The TIRCA strategy was constructed by a hairpin probe (HP) containing 8-oxoG site and a primer probe (PP). In the presence of hOGG1, the HP transformed into dumbbell DNA probe (DDP) after the 8-oxoG site of which was removed. Then the DDP formed closed circular dumbbell probe (CCDP) by ligase. CCDP could be used as amplification template of RCA to trigger RCA. The RCA products containing repeated G4 sequences could combine with ThT to produce enhanced fluorescence, achieving label-free fluorescence sensing of hOGG1. Given the high amplification efficiency of RCA and the high fluorescence quantum yield of the G4/ThT, the proposed TIRCA achieved highly sensitive measurement of hOGG1 activity with a detection limit of 0.00143 U/mL. The TIRCA strategy also exhibited excellent specificity for hOGG1 analysis over other interference enzymes. SignificanceThis novel TIRCA strategy demonstrates high sensitivity and high specificity for the detection of hOGG1, which has also been successfully used for the screening of inhibitors and the analysis of hOGG1 in real samples. We believe that this TIRCA strategy provides new insight into the use of the isothermal nucleic acid amplification as a useful tool for hOGG1 detection and will play an important role in disease early diagnosis and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call