Abstract

A label-free oligonucleotide-based luminescent switch-on assay has been developed for the selective detection of sub-nanomolar Pb2+ ions in aqueous solution and real water samples. An iridium(III) complex was employed as a G-quadruplex specific luminescent probe and a guanine rich DNA (PS2.M, 5′-GTG3TAG3CG3T2G2-3′) was employed as recognition unit for Pb2+ ions. The PS2.M exists in a single-stranded conformation in the absence of Pb2+ ions, and the weak binding of the iridium(III) probe to ssDNA results in a weak luminescence signal. Upon binding to Pb2+ ions, the single-stranded DNA sequence (PS2.M) is induced into a G-quadruplex conformation, which greatly enhances the luminescence emission of the iridium(III) probe. The assay can detect Pb2+ ions in aqueous media with a limit of detection of 600pM. It also exhibits good selectivity for Pb2+ ions over other heavy metal ions. Furthermore, the application of the assay for the detection of Pb2+ ions in spiked river water samples has been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.