Abstract
In recent years the quartz crystal microbalance (QCM) has been accepted as a powerful technique to monitor adsorption processes at interfaces in different chemical and biological research areas. In the last decade, the investigation of adsorption of biomolecules on functionalized surfaces turned out to be one of the paramount applications of the QCM comprising the interaction of nucleic acids, specific molecular recognition of protein-receptor couples, and antigen-antibody reactions realized in immunosensors. The advantage of the QCM technique is that it allows for a label free detection of molecules. This is a result of the fact that the frequency response of the quartz resonator is proportional to the increase in thickness of the adsorbed layer. However, in recent years it became more and more evident that quartz resonators used in fluids are more than mere mass or thickness sensors. The sensor response is also influenced by viscoelastic properties of the adhered biomaterial, surface charges of adsorbed molecules and surface roughness. These phenomena have been used to get new insights in the adhesion process of living cells and to understand their response to pharmacological substances by determining morphological changes of the cells. In this chapter we describe a protocol to explore the kinetics and thermodynamics of specific interactions of different proteins such as lectins and annexins with their ligands using receptor bearing solid supported lipid bilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.