Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the clinic, with the characteristics of occult onset, rapid progression, and high degree of malignancy. Alpha fetoprotein (AFP) is the most important biomarker of HCC, which is widely used in early screening, diagnosis, and prognosis observation. A series of immunoassays have been developed and frequently used in the detection of AFP based on antibodies. Unfortunately, the shortcomings of antibodies, such as thermal unstable and fluctuant activity by batches, lead to the inaccuracy in the detection of AFP. In this study, aptamers instead of antibodies were adopted as the specific recognition element for AFP, aiming to seek an alternative strategy to immunoassays. An AFP-specific ssDNA aptamer was grafted to magnetic nanoparticles (Fe3O4@SiO2) via avidin–biotin interaction, and the resultant aptamer functionalized magnetic nanoparticles (Ap-MNPs) were adequately characterized and tested. The Ap-MNPs in solution exhibited a fast response to the outer magnetic field, and can be completely separated in several minutes. It was found that Ap-MNPs have good specificity to the target AFP, as the recovery of AFP (87.0%) was much higher than the competitive proteins IgG (38.9%), HSA (18.5%), and FIB (11.4%). A convenient and efficient label-free detection method of AFP in serum was developed based on Ap-MNPs in combination with high-performance liquid chromatography. The linearity of this method was over a range of 1–50 μg ml−1 with a correlation coefficient of 0.9999, and the limit of detection was 0.27 μg ml−1. This study indicated that aptamers are an ideal tool for the recognition and detection of biomarkers, and thus will find wide applications in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.