Abstract

Cell membrane motions of living cells are quantitatively measured in nanometer resolution by low-coherent full-field quantitative phase microscopy. Our setup is based on a full-field phase shifting interference microscope with a very lowcoherent light source. The reflection mode configuration and the low-coherent illumination make it possible to differentiate the weak reflection light from the cell membrane from the strong reflection from the glass substrate. Two cell populations are quantitatively assessed by the power spectral density of the cell surface motion and show different trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.