Abstract
The bacterium Rhodococcus jostii RHA1 synthesizes large amounts of triacylglycerols (TAGs) under conditions of nitrogen starvation. To better understand the molecular mechanisms behind this process, we performed proteomic studies in this oleaginous bacterium. Upon nitrogen starvation, we observed a re-routing of the carbon flux towards the formation of TAGs. Under these conditions, the cellular lipid content made up more than half of the cell's dry weight. On the proteome level, this coincided with a shift towards non-glycolytic carbohydrate-metabolizing pathways. These pathways (Entner-Doudoroff and pentose-phosphate shunt) contribute NADPH and precursors of glycerol 3-phosphate and acetyl-CoA to lipogenesis. The expression of proteins involved in the degradation of branched-chain amino acids and the methylmalonyl-CoA pathway probably provided propionyl-CoA for the biosynthesis of odd-numbered fatty acids, which make up almost 30 % of RHA1 fatty acid composition. Additionally, lipolytic and glycerol-degrading enzymes increased in abundance, suggesting a dynamic cycling of cellular lipids. Conversely, abundance of proteins involved in consuming intermediates of lipogenesis decreased. Furthermore, we identified another level of lipogenesis regulation through redox-mediated thiol modification in R. jostii. Enzymes affected included acetyl-CoA carboxylase and a β-ketoacyl-[acyl-carrier protein] synthase II (FabF). An integrative metabolic model for the oleaginous RHA1 strain is proposed on the basis of our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.