Abstract

In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force–distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC50 value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call