Abstract
Our latest methods for non-invasive label-free acquisition of the three-dimensional (3-D) refractive-index maps of live cells in suspension are reviewed. These methods are based on the acquisition of off-axis interferograms of single or multiple cells in suspension from different angles using an external interferometric module, while fully rotating each cell using micro-manipulations. The interferometric projections are processed via computed tomographic phase microscopy reconstruction technique, which considers optical diffraction effects, into the 3-D refractive-index structure of the suspended cell. Till now, tomographic phase microscopy was obtained by acquiring a series of interferograms of the light transmitted through the sample in different angles by either using an entire sample rotation, or patch clamping a single cell, which is invasive to the cells, or alternatively, using various angles of illumination, which causes a limited acceptance angle, and an incomplete 3-D Fourier spectrum. In contrast, our methods allow fast acquisition with full angular range, and thus obtain an accurate 3-D refractive-index map of the imaged cell. By inspection of the 3-D refractive-index distribution of cells in suspension, the proposed methods can be useful for high-throughput, label-free characterization of biological processes and cellular transformations from healthy to pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.