Abstract

Accurate deformable image registration is important for brain analysis. However, there are two challenges in deformation registration of brain magnetic resonance (MR) images. First, the global cerebrospinal fluid (CSF) regions are rarely aligned since most of them are located in narrow regions outside of gray matter (GM) tissue. Second, the small complex morphological structures in tissues are rarely aligned since dense deformation fields are too blurred. In this work, we use a weakly supervised registration scheme, which is driven by global segmentation labels and local segmentation labels via two special loss functions. Specifically, multiscale double Dice similarity is used to maximize the overlap of the same labels and also minimize the overlap of regions with different labels. The structural similarity loss function is further used to enhance registration performance of small structures, thus enhancing the whole image registration accuracy. Experimental results on inter-subject registration of T1-weighted MR brain images from the OASIS-1 dataset show that the proposed scheme achieves higher accuracy on CSF, GM and white matter (WM) compared with the baseline learning model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.