Abstract

This paper proposes a semi-supervised learning method for semantic relation extraction between named entities. Given a small amount of labeled data, it benefits much from a large amount of unlabeled data by first bootstrapping a moderate number of weighted support vectors from all the available data through a co-training procedure on top of support vector machines (SVM) with feature projection and then applying a label propagation (LP) algorithm via the bootstrapped support vectors and the remaining hard unlabeled instances after SVM bootstrapping to classify unseen instances. Evaluation on the ACE RDC corpora shows that our method can integrate the advantages of both SVM bootstrapping and label propagation. It shows that our LP algorithm via the bootstrapped support vectors and hard unlabeled instances significantly outperforms the normal LP algorithm via all the available data without SVM bootstrapping. Moreover, our LP algorithm can significantly reduce the computational burden, especially when a large amount of labeled and unlabeled data is taken into consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.