Abstract

In wavelength-routed networks based on a GMPLS control plane, the resource reservation protocol with traffic engineering extensions (RSVP-TE) allows to establish end-to-end lightpaths. The resource reservation can be blocked due to lack of available resources (forward blocking) or due to resource contentions (backward blocking). In wavelength-routed networks, the backward blocking is the predominant blocking contribution, when traffic load is low or highly-dynamic and when lightpath restoration takes place. To reduce the backward blocking, the paper proposes two label preference (LP) schemes compliant with RSVP-TE message exchanges. LP schemes provide the destination node with a label identifying the preferred wavelength to reserve. The preferred label is computed in a distributed way during the forward signaling phase, with the objective of assigning disjoint wavelengths to reservation attempts that may contend the resources. Simulation results demonstrate that, compared to other schemes, LP schemes are effective in reducing the backward blocking during both lightpath provisioning and restoration, without negatively impacting the forward blocking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.