Abstract

Detecting membrane potentials is critical for understanding how neuronal networks process information. We report a vibrational spectroscopic signature of neuronal membrane potentials identified through hyperspectral stimulated Raman scattering (SRS) imaging of patched primary neurons. High-speed SRS imaging allowed direct visualization of puff-induced depolarization of multiple neurons in mouse brain slices, confirmed by simultaneous calcium imaging. The observed signature, partially dependent on sodium ion influx, is interpreted as ion interactions on the CH3 Fermi resonance peak in proteins. By implementing a dual-SRS balanced detection scheme, we detected single action potentials in electrically stimulated neurons. These results collectively demonstrate the potential of sensing neuronal activities at multiple sites with a label-free vibrational microscope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.