Abstract

Salmonella is one of four key global causes of diarrhea, and in humans, it is generally contracted through the consumption of contaminated food. It is necessary to develop an accurate, simple, and rapid method to monitor Salmonella in the early phase. Herein, we developed a sequence-specific visualization method based on loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in milk. With restriction endonuclease and nicking endonuclease, amplicons were produced into single-stranded triggers, which further promoted the generation of a G-quadruplex by a DNA machine. The G-quadruplex DNAzyme possesses peroxidase-like activity and catalyzes the color development of 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) as the readouts. The feasibility for real samples analysis was also confirmed with Salmonella spiked milk, and the sensitivity was 800 CFU/mL when observed with the naked eye. Using this method, the detection of Salmonella in milk can be completed within 1.5 h. Without the involvement of any sophisticated instrument, this specific colorimetric method can be a useful tool in resource-limited areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.