Abstract

To distinguish protein abundance changes in biological systems under different conditions, mass spectrometry-based proteomics provides a powerful tool to detect and quantify such responses. Improvements in mass spectrometry instrumentation sensitivity and resolution, along with advanced bioinformatics enable new strategies to study host-pathogen interactions. This protocol uses the state-of-the-art MS-based proteomics to assess infection of the global fungal pathogen Fusarium graminearum, on the world-wide cereal crop Triticum aestivum, resulting in the devastating disease of Fusarium head blight (FHB). Here, host infection is mimicked by inoculating F. graminearum onto T. aestivum cultivars (e.g., FHB-resistant and -susceptible) in the growth room under controlled environment, followed by sample harvesting at different time points (e.g., 24 and 120h post-inoculation) to assess temporal responses to infection. The collected samples are processed using our in-house pipeline for total protein extraction and quantified via label-free methods by liquid-chromatography-coupled with tandem MS/MS. From this experiment, we define dual perspectives of infection considering dynamic protein abundance changes in both the pathogen and host simultaneously, allowing us to identify strategies used by the pathogen to evade the host defense responses and those used by the host to protect from severe infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call