Abstract

The development of efficient and convenient strategy without involving enzyme or complex nanomaterial for the micro molecules detection has profound meaning in the diagnosis of diseases. Herein, taking the advantages of the strong affinity of aptamer and catalyzed hairpin assembly, we develop a new non-label optical amplified strategy for thrombin detection in this work. To support both biological inquiry and technological innovation, thermodynamic models are introduced to predict the minimum energy secondary structure of interacting nucleic acid strands and calculate the partition function and equilibrium concentration for complexes in our system. Then, the thermodynamics properties of interacting DNA strands and the reactions of toehold strand displacement-driven assembly have been simulated, validating the feasibility of the theory and optimizing the follow-up lab tests. Following that, our strategy for thrombin detection is proved to be feasible and effective in biological experiment. Taken together, such a biosensor has a good potential in bioactive molecules detection and disease diagnosis for future biological research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.