Abstract

In this paper we study natural deduction for the intuitionistic and classical (normal) modal logics obtained from the combinations of the axioms T, B, 4 and 5. In this context we introduce a new multi-contextual structure, called T-sequent, that allows to design simple labelfree natural deduction systems for these logics. After proving that they are sound and complete we show that they satisfy the normalization property and consequently the subformula property in the intuitionistic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.