Abstract

We demonstrate an as yet unused method to sieve, localize, and steer plasmonic hot spot within metallic nano-interstices close to percolation threshold. Multicolor superlocalization of plasmon mode within 60 nm was constantly achieved by chirp-manipulated superresolved four wave mixing (FWM) images. Since the percolated film is strongly plasmonic active and structurally multiscale invariant, the present method provides orders of magnitude enhanced light localization within single metallic nano-interstice, and can be universally applied to any region of the random film. The result, verified by the maximum likelihood estimation (MLE) and deconvolution stochastic optical reconstruction microscopy (deconSTORM) algorithm, may contribute to label-free multiplex superlocalized spectroscopy of single molecule and sub-cellular activity monitoring combining hot spot steering capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.