Abstract

Endometrial cancer is the most common gynecological cancer in the developed world. However, the accuracy of current diagnostic methods is still unsatisfactory and time-consuming. Here, we presented an alternate approach to monitoring the progression of endometrial cancer via multiphoton microscopy imaging and analysis of collagen, which is often overlooked in current endometrial cancer diagnosis protocols but can offer a crucial signature in cancer biology. Multiphoton microscopy (MPM) based on the second-harmonic generation and two-photon excited fluorescence was introduced to visualize the microenvironment of endometrium in normal, hyperplasia without atypia, atypical hyperplasia, and endometrial cancer specimens. Furthermore, automatic image analysis based on the MPM image processing algorithm was used to quantify the differences in the collagen morphological features among them. MPM enables the visualization of the morphological details and alterations of the glands in the development process of endometrial cancer, including irregular changes in the structure of the gland, increased ratio of the gland to the interstitium, and atypical changes in the glandular epithelial cells. Moreover, the destructed basement membrane caused by gland proliferation and fusion is clearly shown in SHG images, which is a key feature for identifying endometrial cancer progression. Quantitative analysis reveals that the formation of endometrial cancer is accompanied by an increase in collagen fiber length and width, a progressive linearization and loosening of interstitial collagen, and a more random arrangement of interstitial collagen. Observation and quantitative analysis of interstitial collagen provide invaluable information in monitoring the progression of endometrial cancer. Label-free multiphoton imaging reported here has the potential to become an in situ histological tool for effective and accurate early diagnosis and detection of malignant lesions in endometrial cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.