Abstract

We report on the label- and isotope-free monitoring of DNA interactions with low-molecular-weight ligands. An optical technique based on interference at thin layers was used to monitor in real time binding of ligands at DNA which was immobilized by Coulomb interactions at a positively charged surface. Approximately 2 ng DNA/mm2was irreversibly bound to the surface, which remained stable over several days. This result was confirmed by characterization of the layer using spectroscopic ellipsometry. During incubation of immobilized DNA with a variety of intercalators and other DNA-binding compounds in a flow system, interactions were monitored by reflectometric interference spectroscopy. Binding effects between 10 and 400 pg/mm2were detected unambiguously. Nonspecific binding effects were excluded by using a negatively charged reference surface. Variation of intercalator concentration allowed the characterization of interaction with respect to kinetics and thermodynamics by the evaluation of binding rate and equilibrium coverage. The affinity constants were determined in the range between 105and 106m−1, in good agreement to those obtained by homogeneous phase assays. Association rate constants between 103and 105m−1s−1and dissociation rate constants between 10−1and 10−2s−1were determined by evaluation of the binding curves. Both the fast and simple test format and a universal applicability make the new technique described attractive for detecting and characterizing interaction of low-molecular-weight molecules with DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.