Abstract
One strategy to combat antimicrobial resistance is the discovery of new classes of antibiotics. Most antibiotics will at some point interact with the bacterial membrane to either interfere with its integrity or to cross it. Reliable and efficient tools for determining the dissociation constant for membrane binding (KD) and the partitioning coefficient between the aqueous- and membrane phases (KP) are therefore important tools for discovering and optimizing antimicrobial hits. Here we demonstrate that microscale thermophoresis (MST) can be used for label-free measurement of KD by utilising the intrinsic fluorescence of tryptophan and thereby removing the need for chromophore labelling. As proof of principle, we have used the method to measure the binding of a set of small cyclic AMPs to large unilamellar vesicles (LUVs) and two types of lipid nanodiscs assembled by styrene maleic acid (SMA) and quaternary ammonium SMA (SMA-QA). The measured KD values correlate well with the corresponding measurements using surface plasmon resonance (SPR), also broadly reflecting the tested AMPs’ minimal inhibition concentration (MIC) towards S. aureus and E. coli. We conclude that MST is a promising method for fast and cost-efficient detection of peptide-lipid interactions or mapping of sample conditions in preparation for more advanced studies that rely on expensive sample preparation, labelling and/or instrument time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.