Abstract

BackgroundX-linked muscular dystrophy is a primary disease of the neuromuscular system. Primary abnormalities in the Dmd gene result in the absence of the full-length isoform of the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting and cardio-respiratory complications, developmental cognitive deficits and behavioural abnormalities are clinical features of Duchenne muscular dystrophy. In order to better understand the mechanisms that underlie impaired brain functions in Duchenne patients, we have carried out a proteomic analysis of total brain extracts from the mdx-4cv mouse model of dystrophinopathy.ResultsThe comparative proteomic profiling of the mdx-4cv brain revealed a significant increase in 39 proteins and a decrease in 7 proteins. Interesting brain tissue-associated proteins with an increased concentration in the mdx-4cv animal model were represented by the glial fibrillary acidic protein GFAP, the neuronal Ca2+-binding protein calretinin, annexin AnxA5, vimentin, the neuron-specific enzyme ubiquitin carboxyl-terminal hydrolase isozyme L1, the dendritic spine protein drebrin, the cytomatrix protein bassoon of the nerve terminal active zone, and the synapse-associated protein SAP97. Decreased proteins were identified as the nervous system-specific proteins syntaxin-1B and syntaxin-binding protein 1, as well as the plasma membrane Ca2+-transporting ATPase PMCA2 that is mostly found in the brain cortex. The differential expression patterns of GFAP, vimentin, PMCA2 and AnxA5 were confirmed by immunoblotting. Increased GFAP levels were also verified by immunofluorescence microscopy.ConclusionsThe large number of mass spectrometrically identified proteins with an altered abundance suggests complex changes in the mdx-4cv brain proteome. Increased levels of the glial fibrillary acidic protein, an intermediate filament component that is uniquely associated with astrocytes in the central nervous system, imply neurodegeneration-associated astrogliosis. The up-regulation of annexin and vimentin probably represent compensatory mechanisms involved in membrane repair and cytoskeletal stabilization in the absence of brain dystrophin. Differential alterations in the Ca2+-binding protein calretinin and the Ca2+-pumping protein PMCA2 suggest altered Ca2+-handling mechanisms in the Dp427-deficient brain. In addition, the proteomic findings demonstrated metabolic adaptations and functional changes in the central nervous system from the dystrophic phenotype. Candidate proteins can now be evaluated for their suitability as proteomic biomarkers and their potential in predictive, diagnostic, prognostic and/or therapy-monitoring approaches to treat brain abnormalities in dystrophinopathies.

Highlights

  • IntroductionPrimary abnormalities in the Dmd gene result in the absence of the full-length isoform of the membrane cytoskeletal protein dystrophin

  • X-linked muscular dystrophy is a primary disease of the neuromuscular system

  • It is not currently clear whether a pathophysiological hierarchy exists between developmental issues on the one hand and cycles of neurodegeneration and astroglyosis on the other hand in the central nervous system of patients afflicted with X-linked muscular dystrophy [46]

Read more

Summary

Introduction

Primary abnormalities in the Dmd gene result in the absence of the full-length isoform of the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting and cardio-respiratory complications, developmental cognitive deficits and behavioural abnormalities are clinical features of Duchenne muscular dystrophy. Duchenne muscular dystrophy is a paediatric disease of the skeletal musculature that is characterized by a variety of abnormalities in muscle tissues, including changes in myofibre size, central nucleation, fibre branching, hyper-contractility, necrosis, inflammation, fatty deposition and myofibrosis [4,5,6]. Mutations or genetic rearrangements in the X-chromosomal Dmd gene encoding the membrane cytoskeletal protein dystrophin are the underlying cause for highly progressive skeletal muscle wasting [7]. Associated complications in Duchenne patients are cardio-respiratory impairments, orthopaedic problems causing muscle contractures and scoliosis, endocrinological issues related to growth and weight gain, as well as gastrointestinal, renal, urinary and ophthalmological complications [11,12,13,14] that are taken into account in the current treatment and management of dystrophinopathies [15,16,17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call