Abstract

The direct detection of oligodeoxynucleotide (ODN) hybridisation using electrochemical impedance spectroscopy was made on interdigitated array (IDA) gold (Au) ultramicroelectrodes manufactured by silicon technology. The immobilisation of single stranded ODNs (ssODNs) was accomplished by self-assembling of thiol-modified ODNs onto an Au-electrode surface. Faradaic impedance was measured in the presence of K(3)[Fe(CN)(6)]. Double strand formation was identified by a decrease of approximately 50% in impedance in the low frequency region in the presence of K(3)[Fe(CN)(6)], compared to the spectrum of single stranded ODN. The frequency dependent diffusion of Fe(CN)(6)(3-) ions through defects in the ODN monolayer determines the impedance of Au-ssODN surface. The influence of DNA intercalator methylene blue on the impedance of both, single and double strands, was examined along with K(3)[Fe(CN)(6)] and confirmed by cyclic voltammetry. The layer densities and the hybridisation have been further corroborated by chronoamperometric redox recycling of para-aminophenol (p-AP) in ELISA like experiments. It can be concluded, that a performed impedance spectroscopy did not change the layer density. The impedance spectroscopy at ultramicroelectrodes combined with faradaic redox reactions enhances the impedimetric detection of DNA hybridisation on IDA platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.