Abstract
Herein, a label-free, self-enhanced electrochemiluminescence (ECL) sensing strategy for divalent mercury (Hg(II)) detection was presented. First, a novel self-enhanced ECL luminophore was prepared by combining the ECL reagent tris(2, 2′-bipyridyl) dichlororuthenium(II) hexahydrate (Ru(bpy)32+) and its co-reactant carbon nitride quantum dots (CNQDs) via electrostatic interactions. In contrast to traditional ECL systems where the emitter and its co-reactant underwent an intermolecular reaction, the self-enhanced ECL system exhibited a shortened electron-transfer distance and enhanced luminous efficiency because the electrons transferred from CNQDs to oxidized Ru(bpy)32+ via an intramolecular pathway. Furthermore, the as-prepared self-enhanced ECL material was encapsulated in silica (SiO2) nanoparticles to generate a Ru-QDs@SiO2 luminophore. Based on the different affinity of Ru-QDs@SiO2 nanoparticles for single-stranded DNA (ssDNA) and Hg(II)-triggered double-stranded DNA (dsDNA), a label-free ECL biosensor for Hg(II) detection was developed as follows: in the absence of Hg(II), ssDNA was adsorbed on Ru-QDs@SiO2 surface via hydrogen bond, electrostatic, and hydrophobic interaction. Thus, quenched ECL signal was observed. On the contrary, in the presence of Hg(II), stable dsDNA was formed and carried the ssDNA separating from Ru-QDs@SiO2 surface, resulting in most of Ru-QDs@SiO2 existing in their free state. Therefore, a recovered ECL intensity was obtained. On this basis, Hg(II) was measured by the proposed method in the range of 0.1 nM-10 μM, with a detection limit of 33 pM. Finally, Hg(II) spiked in water samples was measured to evaluate the practicality of the fabricated biosensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.