Abstract

Prostate-specific antigen (PSA) was used as the model, an ultrasensitive label-free electrochemiluminescent immunosensor was developed based on graphene quantum dots. Au/Ag-rGO was sythsized and used as electrode material to load a great deal of graphene quantum dots due to the large surface area and excellent electron conductivity. After aminated graphene quantum dots and acarboxyl graphene quantum dots were modified onto the electrode, the ECL intensity was much high using K2S2O8 as coreactant. Then, antibody of PSA was immobilized on the surface of modified electrode surface through the adsorption of Au/Ag toward proteins, leading to the decrease of the ECL intensity. As proven by ECL spectra test and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the ECL intensity decreased linearly with the logarithm of PSA concentration in the range of 1 pg/mL ~ 10 ng/mL. The detection limit achieved is 0.29 pg/mL. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results. Due to excellent stability, high sensitivity, acceptable repeatability and selectivity, the immunosensor has promising applications in disease and drug analysis.

Highlights

  • Prostate-specific antigen (PSA) was used as the model, an ultrasensitive label-free electrochemiluminescent immunosensor was developed based on graphene quantum dots

  • Antibody of PSA was immobilized on the surface of modified electrode surface through the adsorption of Au/Ag toward proteins, leading to the decrease of the ECL intensity

  • Au/Ag-rGO was used as electrode material to load a great deal of graphene quantum dots due to the large surface area and excellent electron conductivity

Read more

Summary

Results and Discussion

A gradual decrease in the ECL signal was achieved when PSA antibody (curve c), BSA (curve d) and PSA (curve e) was modified onto the electrode surface successively, which could be attributed to the block of biomacromolecules hindering the electron transfer. Both the above results were consistent with the fact that the electrode was modified as expected. Compared with the bare electrode (curve a), the ECL response was enhanced after GCE was modified. The ECL responses were measured by mixing 5 ng/mL of PSA with 100 ng/mL carcinoembryonic antigen (CEA), 100 ng/mL BSA and 100 ng/mL glucose,

Sample Human serum
Conclusions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.