Abstract

Vasopressin is an indicating biomarker for blood pressure in the human body and low vasopressin levels can be indicative of late-phase hemorrhagic shock or other traumatic injuries. In this paper we have developed an aptamer-based label-free microfluidic biosensor for the electrochemical detection of vasopressin. The detection area consists of aptamers immobilized on carbon nanotubes which specifically capture the vasopressin molecules in solution resulting in changes in conductivity across the sensor. We report a limit of detection of 43pM in standard solutions and demonstrate high detection specificity toward vasopressin when different interferents are present. The miniaturized microfluidic biosensor offers continuous monitoring of different vasopressin levels with good potential for portability. Ultimately such a system could serve as a point-of-care diagnostics tool for patients with excessive bleeding when standard medical infrastructure is not available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.