Abstract

A signal-amplified platform was designed to construct a label-free electrochemical aptasensor for lead ions (Pb2+) assay. First, flower-like molybdenum disulfide-supported AuNPs (AuNPs@MoS2) nanocomposites were synthesized and used as substrates for modifying the electrode. The AuNPs@MoS2 material possessed large surface area and superior biocompatibility, which was beneficial to improve the loading amount of the complementary DNA (cDNA) and amplified the response signal. Importantly, the prepared core-shell Pt@Pd bimetallic nanoparticles (Pt@PdNPs) were used to conjugate with redox marker thionine (Thi) and aptamer (Apt) for further signal amplification; the obtained signal probes (Thi-Pt@PdNPs-Apt) were connected by the cDNA assembled on the electrode through DNA hybridization. Differential pulse voltammetry was performed to monitor the signal of Thi. After incubating of aptasensor with Pb2+, the specific recognition of Pb2+ and Apt resulted in the dissociation of aptamer-cDNA complex, thereby the Thi-Pt@PdNPs-Apt separated from the electrode surface and decreased current response was obtained. The prepared electrochemical sensor exhibited linear response to Pb2+ in the range 5.0 × 10-4-100 nM and a detection limit of 1.0 × 10-4nM was achieved. The sensor was applied to the determination ofPb2+ in actual sample with high sensitivity and accuracy, demonstrating potential applications in heavy metal monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.