Abstract

Surface-enhanced Raman spectroscopy (SERS), as a label-free, highly sensitive analytical method, has become an important tool for providing substance fingerprints. In this study, silver nanoparticles containing thiosulfate ions and calcium ions (Ag@SCNPs) have been used as an enhanced substrate to eliminate the interference of impurities on DNA signals. Intrinsic structural information on single-strand DNA (ssDNA) was directly obtained through SERS. The improved enhancement system was used to explore the base-stacking rules of ssDNA in a solution environment. For the first time, single-base insertion mutations and deletion mutations, as well as their exact mutation sites, were identified, and Raman spectra with high stability, repeatability, and high signal-to-noise ratio were obtained. The method is simple, fast, and accurate, and the detection process is nondestructive. It has potential to be applied in the fields of medical diagnosis and genetics research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.