Abstract

Dual pH and temperature sensitive microgel-based etalons were fabricated by sandwiching a “monolithic” microgel layer between two semitransparent, Au layers. The devices exhibit visual color and multipeak reflectance spectra, both of which primarily depend on the distance between the Au surfaces mediated by the microgel diameter. We found that a polycationic polyelectrolyte can penetrate through the Au overlayer to interact with negatively charged microgel confined between Au overlayers. In this submission we report that biotinylated polycationic polymer can penetrate through the Au overlayer of a poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalon and cause the microgel layer to collapse. The collapse results in a shift in the spectral peaks of the reflectance spectra. We found that the extent of peak shift depends on the amount of biotinylated polycation added to the etalon, which can subsequently be used to determine the concentration of streptavidin in solution at pM concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.