Abstract

In this paper, pulsed streaming potentials generated in plastic microfluidic channels are used for the label-free detection of some model analytes. The microchannels are fabricated with the commodity plastic cyclic olefin copolymer (COC), and the detection signal arises from a change in the surface charge upon analyte adsorption on the modified microchannel surface. The role of the surface modification is to confer the microchannel with a predetermined charge and a particular specificity toward the adsorption of the target analyte. In this work, several target probes displaying different levels of specificity were investigated. Heparin and streptavidin were detected by adsorption on microchannel surfaces modified with protamine and biotin, respectively, whereas bovine serum albumin (BSA) and methylene blue (MB) showed nonspecific adsorption on almost any modified or unmodified COC microchannel surface. The magnitude of the streaming potential was found to be proportional to the liquid pressure and the surface charge of the microchannel in accord with the Smoluchowski equation. Because the relative polarity of the streaming potential is determined by the surface charge, the most straightforward detection with this method occurs when the charge is reversed upon analyte adsorption. This strategy was used for the species described in this work, and the lowest concentrations detected were approximately 0.01 units/mL for heparin (below clinical relevance), approximately 10 (-9) M for BSA, and approximately 10 (-6) M for MB. Unlike the conventional method of steady flow, in this work, the streaming potentials were measured under pulsed conditions of flow and using nonreference electrodes. This approach removes the need of special electrolytes as it is usually required when using reference electrodes, and at the same time, it mitigates the interference of electrochemical drift from the electrodes. Relative standard deviations of approximately 1-2% and measuring times of approximately 10 s are readily attained with this experimental setup. The on-channel modification of the surface was carried out by UV-photografting methods given the significant UV transparency of COC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.