Abstract

We report two label-free fluorescent aptasensor methods for the detection of S. typhimurium. In the first method, we have used a ‘‘turn off’’ approach in which the aptamer is first intercalated with SYBR Green I (SG), leading to a greatly enhanced fluorescence signal. The addition of S. typhimurium (approximately 1530–96938 CFU/mL), which specifically binds with its aptamer and releases SG, leads to a linear decrease in fluorescence intensity. The lowest detection limit achieved with this approach was in the range of 733 CFU/mL. In the second method, a ‘‘turn on’’ approach was designed for S. typhimurium through the Förster resonance energy transfer (FRET) between Rhodamine B (RB) and gold nanoparticles (AuNPs). When the aptamer and AuNPs were mixed with RB, the fluorescence of RB was significantly quenched via FRET. The aptamer adsorbs to the AuNP surface to protect them from salt-induced aggregation, which leads to the fluorescence quenching of RB in presence of AuNPs. Upon the addition of S. typhimurium, S. typhimurium specifically binds with its aptamer and loses the capability to stabilize AuNPs. Thus, the salt easily induces the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched RB. S. typhimurium concentrations ranging from 1530 to 96938 CFU/mL with the detection limit of 464 CFU/mL was achieved with this methodology. Given these data, some insights into the molecular interactions between the aptamer and the bacterial target are provided. These aptasensor methods also may be adapted for the detection of a wide variety of targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call