Abstract

Carbon dots (CDs)-based biosensors have attracted considerable interest in reliable and sensitive detection of microRNA (miRNA) because of their merits of ultra-small size, excellent biosafety and tunable emission, whereas complicated labeling procedure and expensive bioenzyme associated with current strategies significantly limit their practical application. Herein, we developed a label-free and enzyme-free fluorescence strategy based on strand displaced amplification (SDA) for highly sensitive detection of miRNA using sulfydryl-functionalized CDs (CDs-SH) as probe. CDs-SH displayed excellent response to G-quadruplex DNA against other DNAs based on based on the catalytic oxidation of –SH into –S–S– by hemin/G-quadruplex. Further, CDs-SH were employed to detect miRNA, using miRNA-21 as target model, which triggered the SDA reaction of P1 and P2 to generate hemin/G-quadruplex, subsequently making CDs-SH transform from dot to aggresome along with the quenched fluorescence. Therefore, label-free, enzyme-free, and highly sensitive analysis of miRNA-21 was readily acquired with a limit of detection at 0.03 pM. This proposed biosensor couples the advantages of CDs and label-free/enzyme-free strategy, and thus has a significant potential to be used in early and accurate diagnosis of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.