Abstract
Background and ObjectiveMulti-label Chest X-ray (CXR) images often contain rich label relationship information, which is beneficial to improve classification performance. However, because of the intricate relationships among labels, most existing works fail to effectively learn and make full use of the label correlations, resulting in limited classification performance. In this study, we propose a multi-label learning framework that learns and leverages the label correlations to improve multi-label CXR image classification. MethodsIn this paper, we capture the global label correlations through the self-attention mechanism. Meanwhile, to better utilize label correlations for guiding feature learning, we decompose the image-level features into label-level features. Furthermore, we enhance label-level feature learning in an end-to-end manner by a consistency constraint between global and local label correlations, and a label correlation guided multi-label supervised contrastive loss. ResultsTo demonstrate the superior performance of our proposed approach, we conduct three times 5-fold cross-validation experiments on the CheXpert dataset. Our approach obtains an average F1 score of 44.6% and an AUC of 76.5%, achieving a 7.7% and 1.3% improvement compared to the state-of-the-art results. ConclusionMore accurate label correlations and full utilization of the learned label correlations help learn more discriminative label-level features. Experimental results demonstrate that our approach achieves exceptionally competitive performance compared to the state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.