Abstract

Robotic fruit harvesting requires dexterity to handle delicate crops and development relying upon field testing possible only during the harvesting season. Here we focus on raspberry crops, and explore how the research methodology of harvesting robots can be accelerated through soft robotic technologies. We propose and demonstrate a physical twin of the harvesting environment: a sensorized physical simulator of a raspberry plant with tunable properties, used to train a robotic harvester in the laboratory regardless of season. The sensors on the twin allow for direct comparison with human demonstrations, used to tune the robot controllers. In early field demonstrations, an 80% harvesting success rate was achieved without any modifications on the lab trained robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call