Abstract
The analysis of protein antigens as biomarkers in clinical samples is particularly helpful for the early diagnosis of diseases. However, this is difficult to accomplish owing to the presence of the antigens in trace amounts as well as the complexity of the matrixes in clinical samples. In this study, a lab-on-membrane platform that can be combined with paper spray ionization mass spectrometry was developed for the in situ high-throughput sensitive detection of the prostate-specific antigen (PSA). The sensitivity of the proposed platform was enhanced via two strategies: (1) the synthesis of a biotin-streptavidin scaffold caused an increase in the capturing efficiency of PSA by a factor of 5 and (2) the immobilization of a large number of mass tag molecules on the gold nanoparticles allowed for the amplification of the mass spectrometry signals. The limit of detection was approximately 3.0 pg mL-1. The selectivity to PSA was guaranteed by using an antibody-aptamer pairing sandwich immunoassay, and PSA detection was unaffected even when other protein antigens (carcinoembryonic antigen and carbohydrate antigen 125) were present. The modified membranes maintained their performance for at least 30 days when stored at 4 °C. Finally, analysis of human serum samples confirmed that the PSA concentration as determined using the proposed platform was consistent with that determined with a conventional chemiluminescent immunoassay. Thus, this PSA analyzing platform is suitable for prostate cancer diagnosis in clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.