Abstract

The development of microfluidic processes requires information-rich detection methods. Here we introduce the concept of remote detection exchange NMR spectroscopy (RD-EXSY), and show that, along with indirect spatial information extracted from time-of-flight data, it provides unique information about the active regions, reaction pathways, and intermediate products in a lab-on-a-chip reactor. Furthermore, we demonstrate that direct spatial resolution can be added to RD-EXSY efficiently by applying the principles of Hadamard spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.