Abstract
Oxalate is commonly employed as adjuvant of pesticide agent, causing renal injury of human even in trace residues. Despite the great achievements of the existing point-of-care testing (POCT) technology, accurate on-site screening of oxalate remains a tricky issue. To this aim, we proposed a “lab in a tube” platform which integrated portable hydrogel kit with smartphone for real-time monitoring of oxalate to achieve quantitatively precise analysis. In this work, a stimuli-responsive hydrogel-based kit was constructed via embedding manganese dioxide (MnO2) nanosheets into sodium alginate hydrogel system. Based on the intrinsic oxidase-like activity, MnO2 nanosheets-based nanozyme triggered color reaction by introducing a common sensing probe 3,3′,5,5′-tetramethylbenzidine. Meanwhile, the presence of oxalate would decompose MnO2 nanosheets, inducing the decrease of nanozyme activity, which resulted in the color response of portable kit. Coupling with ImageJ software, the image information of kit captured via smartphone could be transduced into the hue intensity, which provided a directly quantitative tool to detect oxalate with a detection limit of 8.0 μmol L−1. This portable smartphone biosensor was successfully applied for screening urine sample within 10 min for high-throughput analysis (twelve samples) without the need for any advanced analytical instruments. Based on the merits of simple operation, cost-efficiency, and good selectivity, the availability of the miniaturized biosensor platform for POCT will achieve the requirements of routine screening and disease prevention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.