Abstract

Symmetrical solid oxide fuel cells (SOFCs) have more attractive benefits such as a simplified fabrication procedure and enhanced stability and reliability compared to conventional SOFC. In this study, we fabricated a La0.6Ca0.4Fe0.8Ni0.2O3−δ (LCFN) – Sm0.2Ce0.8O1.9 (SDC) composite via infiltration and simple mixing methods and evaluated it as both anode and cathode for symmetrical SOFCs (S-SOFC). X-ray diffraction (XRD) and scanning electron microscope (SEM) results demonstrated that Fe-Ni bimetallic nanoparticles were exsolved in-situ from LCFN perovskite and distributed on the surface of LCFN backbone after H2 reduction at high temperature. The electro-activity towards oxygen reduction reaction (ORR) at the cathode side could be further improved by infiltration of SDC nanoparticles. A combined effect of in-situ ex-solution of Fe-Ni as well as infiltration of SDC nanoparticles synergistically promoted the hydrogen oxidation reaction at the anode and ORR activity at the cathode. Furthermore, the S-SOFC showed good stability in H2 at 800 °C for 140 h and reliable redox stability undergoing a repeated H2-air cycles. These recent results indicate that the LCFN-SDC composite electrodes were promising bi-electrode materials for high performance and cost-effective S-SOFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.