Abstract

For many years, the clinical significance of the anti-Müllerian hormone (AMH) was limited to its critical role in foetal sexual development. However, in the last 20 years it has also emerged as a marker of ovarian function.AMH has specific functions as a regulator of follicular growth, playing its role as negative feedback signal. It may also play an important role in the regulation of the number of growing follicles (inhibiting the recruitment) as well as in their selection to be ovulated (inhibiting FSH).AMH is synthesised as a pre-pro-hormone. In the cytoplasm each monomer is cleaved, generating one N-terminal fragment: 110 KDa (pro region) and another C-terminal fragment: 25 KDa, non-covalently bound by two disulphide bridges. The C-terminal domain is bioactive, binding to the receptor, but requires the N-terminal fragment to trigger a biological response. A mixture of pro-AMH complex and C-terminal/N-terminal complex can be found in the bloodstream, which can be measured by the assays available.Several authors have shown that AMH is an early marker of the decrease and depletion of ovarian reserve. It shows a close correlation with follicular reserve and reproductive capacity more than FSH and oestradiol.This review leaves no doubt about the usefulness of AMH in the fertile phase. It has proven to be an excellent tool in characterising poor responders in assisted reproduction procedures, as an early alert in young women of a low ovarian reserve in relation to their chronological age, as well as in expressing a number of follicles in high growth, as in polycystic ovary syndrome, to avoid ovarian hyperstimulation. The growing number of patients who have decided to delay motherhood and the role of AMH in ovarian physiology has led it to an integral part of the assessment of women with impaired fertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call