Abstract
Inlet air filters are widely used to remove solids and liquid droplets from the ambient air before it enters the compressor of a gas turbine. Clean inlet air provides many advantages: Less corrosion of the compressor and of gas-path hot parts, such as the turbine, decreased compressor fouling, less erosion of the compressor bladeThese in turn prevent deterioration of output and heat rate, and reduce maintenance costs. Compressor fouling is caused by the ingestion of substances that deposit and adhere to blade surfaces, resulting in reduced aerodynamic efficiency and decreased available output. Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested. The consequent lower loss of output power and decreased cleaning efforts provide lower costs of operation and increased shaft power. This work was composed of three major efforts: 1) A literature search was performed to establish the state of the art for particle removal from gases, particularly by electrostatic precipitation, and to identify the leading vendors of the equipment-considering both experience and technical expertise. 2) Two chosen companies were visited to determine their technical capabilities as they apply to gas turbine inlet air filtration. 3) A representative gas turbine was specified by PRCI as being the equivalent of a GE Model 3002J turbine, with airflow of 91,200 acfm. A specification based upon that airflow was prepared and submitted to the two vendors. Each vendor prepared a proposal for a filter system compliant with the specification. The proposed air filtration equipment is sufficiently different from existing products that it was judged not beneficial to visit manufacturing facilities. Both vendors are reputable suppliers of air filtration equipment. This study is intended to provide definitive information relative to the use of new technology for air inlet filtration on gas turbines in gas pipeline pumping applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.