Abstract

We consider a L2-contraction (a L2-type stability) of large viscous shock waves for the multi-dimensional scalar viscous conservation laws, up to a suitable shift by using the relative entropy methods. Quite different from the previous results, we find a new way to determine the shift function, which depends both on the time and space variables and solves a viscous Hamilton-Jacobi type equation with source terms. Moreover, we do not impose any conditions on the anti-derivative variables of the perturbation around the shock profile. More precisely, it is proved that if the initial perturbation around the viscous shock wave is suitably small in L2-norm, then the L2-contraction holds true for the viscous shock wave up to a suitable shift function. Note that BV-norm or the L∞-norm of the initial perturbation and the shock wave strength can be arbitrarily large. Furthermore, as the time t tends to infinity, the L2-contraction holds true up to a (spatially homogeneous) time-dependent shift function. In particular, if we choose some special initial perturbations, then L2-convergence of the solutions towards the associated shock profile can be proved up to a time-dependent shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.