Abstract

We prove the first positive results concerning boundary value problems in the upper half-space of second order parabolic systems only assuming measurability and some transversal regularity in the coefficients of the elliptic part. To do so, we introduce and develop a first order strategy by means of a parabolic Dirac operator at the boundary to obtain, in particular, Green's representation for solutions in natural classes involving square functions and non-tangential maximal functions, well-posedness results with data in $L^2$-Sobolev spaces together with invertibility of layer potentials, and perturbation results. In the way, we solve the Kato square root problem for parabolic operators with coefficients of the elliptic part depending measurably on all variables. The major new challenge, compared to the earlier results by one of us under time and transversally independence of the coefficients, is to handle non-local half-order derivatives in time which are unavoidable in our situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.