Abstract
In this paper, we prove interior Poincaré and Sobolev inequalities in Euclidean spaces and in Heisenberg groups, in the limiting case where the exterior (resp. Rumin) differential of a differential form is measured in L1 norm. Unlike for Lp, p>1, the estimates are doomed to fail in top degree. The singular integral estimates are replaced with inequalities which go back to Bourgain-Brezis in Euclidean spaces, and to Chanillo-Van Schaftingen in Heisenberg groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.