Abstract
Retrotransposons have played a central role in human genome evolution. The accumulation of heritable L1, Alu and SVA retrotransposon insertions continues to generate structural variation within and between populations, and can result in spontaneous genetic disease. Recent works have reported somatic L1 retrotransposition in tumours, which in some cases may contribute to oncogenesis. Intriguingly, L1 mobilization appears to occur almost exclusively in cancers of epithelial cell origin. In this review, we discuss how L1 retrotransposition could potentially trigger neoplastic transformation, based on the established correlation between L1 activity and cellular plasticity, and the proven capacity of L1-mediated insertional mutagenesis to decisively alter gene expression and functional output.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.