Abstract

We propose an inference method to estimate sparse interactions and biases according to Boltzmann machine learning. The basis of this method is $L_1$ regularization, which is often used in compressed sensing, a technique for reconstructing sparse input signals from undersampled outputs. $L_1$ regularization impedes the simple application of the gradient method, which optimizes the cost function that leads to accurate estimations, owing to the cost function's lack of smoothness. In this study, we utilize the majorizer minimization method, which is a well-known technique implemented in optimization problems, to avoid the non-smoothness of the cost function. By using the majorizer minimization method, we elucidate essentially relevant biases and interactions from given data with seemingly strongly-correlated components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call