Abstract

In this paper, we present a Bayesian maximum a posteriori method for multi-slice helical CT reconstruction based on an L0-norm prior. It makes use of a very low number of projections. A set of surrogate potential functions is used to successively approximate the L0-norm function while generating the prior and to accelerate the convergence speed. Simulation results show that the proposed method provides high quality reconstructions with highly sparse sampled noise-free projections. In the presence of noise, the reconstruction quality is still significantly better than the reconstructions obtained with L1-norm or L2-norm priors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.