Abstract

LL, Lα, Lβ, and Lγ X-ray fluorescence cross sections for Pr, Sm, Gd, Dy, Ho, Er, Yb, Pt Au, and Pb were measured at the excitation energy 16.58 keV. An X-ray tube and a secondary excitor system was used instead of radioisotopes for the measurements. Experimental cross sections are compared with the theoretical estimates based on relativistic Dirac–Hartree–Slater theory. Average L-shell fluorescence yields [Formula: see text] are deduced using the present experimental cross sections and the theoretical subshell photoionization cross sections. The derived average fluorescence yields are fitted by least squares to polynomials in Z of the form ΣnanZn and compared with theoretical and earlier fitted values. Good agreement is observed ' between the experimental results and the theoretical estimates based on relativistic Dirac–Hartree–Slater theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call