Abstract

Opening of dihydropyridine-sensitive voltage-dependent L-type Ca2+-channels (LTCCs) represents the final common pathway for insulin secretion in pancreatic beta-cells and related cell lines. In insulin-secreting cells their exact subunit composition is unknown. We therefore investigated the subunit structure of (+)-[3H]isradipine-labeled LTCCs in insulin-secreting RINm5F cells. Using subunit-specific antibodies we demonstrate that alpha1C subunits (199 kDa, short form) contribute only a minor portion of the total alpha1 immunoreactivity in membranes and partially purified Ca2+-channel preparations. However, alpha1C forms a major constituent of (+)-[3H]isradipine-labeled LTCCs as 54% of solubilized (+)-[3H]isradipine-binding activity was specifically immunoprecipitated by alpha1C antibodies. Phosphorylation of immunopurified alpha1C with cAMP-dependent protein kinase revealed the existence of an additional 240-kDa species (long form), that remained undetected in Western blots. Fifty seven percent of labeled LTCCs were immunoprecipitated by an anti-beta-antibody directed against all known beta-subunits. Isoform-specific antibodies revealed that these mainly corresponded to beta1b- and beta3-subunits. We found beta2- and beta4-subunits to be major constituents of cardiac and brain L-type channels, respectively, but not part of L-type channels in RINm5F cells. We conclude that alpha1C is a major constituent of dihydropyridine-labeled LTCCs in RINm5F cells, its long form serving as a substrate for cAMP-dependent protein kinase. beta1b- and beta3-Subunits were also found to associate with L-type channels in these cells. These isoforms may therefore represent biochemical targets for the modulation of LTCC activity in RINm5F cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.