Abstract

Burkholderia phytofirmans PsJN is a well-known plant growth-promoting bacterium that establishes rhizospheric and endophytic colonization in different plants. PsJN inoculation promotes growth of different horticultural crops. L-Tryptophan (L-TRP) application may further improve its effectiveness, due to substrate (L-TRP)-dependent inoculum (PsJN)-derived auxins in the rhizosphere. In the present study, the substrate (L-TRP)-dependent response of PsJN inoculation to maize growth and auxin biosynthesis was evaluated under pot conditions. In vitro auxin biosynthesis by PsJN was determined in the absence and presence of L-TRP, a physiological precursor of auxins. Surface-disinfected seeds were treated with peat-based inoculum and L-TRP solutions (10−4 and 10−5 M). Results revealed that L-TRP application and PsJN inoculation, when applied separately, significantly increased the growth parameters of maize compared to untreated control. However, PsJN inoculation supplemented with L-TRP (10−5 M) gave the most promising results and significantly increased plant height, photosynthesis, chlorophyll content, root biomass and shoot biomass up to 18, 16, 45, 62 and 55 %, respectively, compared to the uninoculated control. Similarly, higher values of N, P and IAA content were observed with precursor (L-TRP)–inoculum (PsJN) interaction. The inoculant strain efficiently colonized maize seedlings and was recovered from the rhizosphere, root and shoot of plants. The results imply that substrate (L-TRP)-derived IAA biosynthesis in the rhizosphere by PsJN inoculation could be a useful approach for improving the growth, photosynthesis and nutrient content of maize plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call